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Analysis of the frontal regimes in the dynamics of physical adsorption of multicompo- 
nent mixtures for various types of theoretical models in which provision is made for a vari- 
ety of interphase mass-exchange mechanisms is of theoretical and practical interest from 
the standpoint of choosing optimum regimes for adsorption separation of mixtures [i]. For 
the simplest theoretical model of the dynamics of adsorption (the equilibrium model of ideal 
expulsion), which is described by a narrowly defined hyperbolic system of quasilinear equa- 
tions, the analysis of the frontal regime in the majority of cases [2, 3] is carried out 
with the aid of the Lax conditions [4-6]. For the theoretical models of the dynamics of 
mixture adsorption in which provision is made for the smearing factors, and these are de- 
scribed by a combined quasilinear system of equations, in [7] we have derived the conditions 
for the realization of the frontal regimes which depend not only on the form of the adsorp- 
tion isotherms, but also, as in the case of the simplest model for hyperbolic equations, 
on the values of the mass-exchange coefficients characterizing the various mechanisms of 
interphase mass exchange. The hyperbolic systems of equations for adsorption dynamics in 
the case of mixtures may tolerate the existence of several (nonunique) frontal regimes with- 
in the framework of the Lax conditions [8]. 

In the present study we deal with the problem of selecting a single frontal regime 
through analysis of the analytical solutions for the equations of mixture adsorption dyna- 
mics, with provision for the approximate model equations which take into consideration the 
interphase mass exchange. 

i. The frontal dynamics of the physical adsorption of multicomponent mixtures is de- 
scribed by a system of quasilinear equations for the material balance and the kinetics of 
the interphase mass exchange for each of the components in the mixture [7]: 

ocwat + u Oc.dOz + 5 0q~IOt = ~ D~5%klOz% 
h = l  

Oqr~/Ot = ~ G~ [/k (c) --  qh], t ~ m, 
h = l  

= (t - -  ~)/~, 

k ~ n .  

(1.1) 

Here c m is the concentration of the m-th component of the mixture in the moving phase; qm is 
the concentration of the m-th component of the mixture in the adsorption phase; fm(C) repre- 
sents the equations of the adsorption isotherms; u is the linear velocity of the flow; Dmk (~) 
is the coefficient of diffusion (m = k) and mutual diffusion (m ~ k); Gmk is the coefficient 
of interphase mass exchange; n is the number of components in the mixture. 

For the simplest equilibrium (i/Gmk = 0) model of an ideal expulsion (Dmk (~) = 0), sys- 
tem (i.i) changes to the hyperbolic: 

Ocm/Ot J- uOe~/Oz + 50/~(c)/Ot = O, 

which we write in matrix form 

Oc=!Ot-t-uBm~OcffOz=O, 

(Emk is the unit matrix). 

(1 .2 )  

System of equations (1.2) for the initial and boundary conditions 

cr~ (0, t) = Corn, cm (z, O) = corn, Corn, cOrn = c o n s t  
(1.3) 
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permits the existence of two frontal regimes: a frontal regime of a type of concentrated 
traveling waves (shock waves) 

c",(z,t) = cm(y), y = z - -  w~t + Yo~, Yoi = const, ( 1 . 4 )  

and a frontal regime of diffusion-type concentrated waves (rarefaction waves) 

c~(z , t )  = c" , (~) ,  ~ = ~ t .  (1.5) 

For the adsorption isotherms fm(C) with monotonic eigenvalues ~g the matrix fmk of the condi- 
tion for the existence (the Lax condition) of regimes such as (1.4) and (1.5), respectively, 
have the form [4, 6]: 

o v, (cO i-~)) > wi > v~ (c(~-1)), Co,. > cm, 

c(i--2) ra = c m ( y - - _ - - o o ) ,  c ( ~ - l ) = c m ( y =  + o o ) ,  i<i<n, 

" - ' )  = c", (~ -+ 0), v~ (c(~-~)) < vi (c) < vi (c"-~)), c• 

c~ -1) = c", (~ ~ oo), v~ = u / ( t  + 8~(~_~+~)), 

(1.6) 

where v i are the eigenvalues of the matrix UBmk [see (1.2)]. The velocity w i is found from 
the Hugoniot equations [6]: 

w~ = u / ( l  + ~[/",(c)]/[c", l) ,  

[c",] = Cm(y --- - - o o ) - -  Cm(y = --~oo), 
[l",(c)] = ]",(c(v = - c o ) ) -  ]~(c(v  = + o o ) )  

(1.7) 

According to (1.6), for the dynamics of mixture adsorption, system (1.2) may permit 
several frontal solutions such as (1.4) [8]. Therefore, the question of choosing a single 
physically realizable frontal regime of the (1.4) and (1.5) type within the scope of the 
Lax conditions remains open. For the solution of this problem let us examine a system of 
equations for the dynamics of mixture adsorption in which provision is made for the approxi- 
mate equations which take into consideration interphase mass exchange: 

acre~at + u ac",/az + ~ a/", (c)/at = ~ ~",ka~ck/atL 
h = l  

(1.8) 

which for isotherms of a specific form [see (1.9)] allow for an analytical solution. System 
or D (s and e a ox te el e uat s f (1.8) has been obtained out of (I.i) f mk = 0 th ppr ima mod q ion or 

the kinetics of interphase mass exchange 

qm = 1~ (c) - -  rmhacdat ,  ~ h  = G~g/gk. 
h = l  g = l  

From the physicochemical standpoint [i], the equations for the mixture adsorption isotherms 
fm(C) must satisfy the conditions fm(C) ~ 0, fmm > 0, fmk < 0, m ~ k. For quasilinear mix- 
ture adsorption isotherms 

/ " , ( c ) = / o m +  ~ K m h C h ,  K" , .~>O,  K m ~ < O ,  m g : : k  ( 1 . 9 )  
h = l  

and systems (i.i) and (1.8) it is possible to construct an analytical solution. For non- 
linear isotherms of the form 

when 

Ira(c) = koc,. + ~ b,~gc",cg, k o > O, 
g = l  

"~m~ = TErnk, "~ > O, 

f1.1o) 

(i.11) 
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and systems (1.8), (i.ii) for the nonsingular matrix bmk an analytical solution can also 
be found. 

The quasilinear system (i.i) and system of equations (1.8) may allow for a frontal re- 
gime of the diffusion type of concentrated waves for which 

era(z, t) = c,,(~, t), ~ = z/t, t ~ m ~ n. ( 1 . 1 2 )  

In the previous solution the quantity t is taken as the parameter. As t ~ ~ the solution 
of (1.12) tends asymptotically to the self-similar solution (1.5). 

2. Let us examine the analytical solution of system (i.I), (1.8) for isotherms of the 
form of (1.9) and (i.i0). The analytical solutions of system (i.i) for the quasilinear iso- 
therms in (1.9) are found by means of the Laplace integral transform over time. After the 
transformations the asymptotic (z, t + ~) solution is written as follows: 

1i2 
h = l  

= 0 1 1 2  (l < k, (2. l )  

erfc (x) = 1 - -  g-1/2 ~ exp ( - -  F) dt. 
0 

To e a c h  wave index  i (1 ~ i ~ n)  we have  c o r r e s p o n d i n g  e i g e n v a l u e s  o f  b k ( i )  f o r  t h e  m a t r i x  

--1 It~g~ = D~/w~ + 8 G~/~j u and t h e  e i g e n v a l u e s  w i o f  t h e  m a t r i x  UBmk, which  we w i l l  number 

in  t h e  f o l l o w i n g  manner :  

w~ < w~ < w~ < ... < w~ (1 <~ t ~< n), ( 2 . 2 )  

(Pm are the eigenvalues of the matrix Kgs). It follows from the earlier solutions that the 

asymptotic solutions of (2.1) for (i.i) in the presence of (1.9) coincide with the asymptotic 
solutions of system (1.8), provided that the quantities bm(i) equal the eigenvalues of the 
matrix Zmk/U, and they coincide with (1.8), (i. Ii), provided that T = u max b~. Strictly 

~,~ 

speaking, a frontal regime of the type of (1.4) occurs only for (1.2), while in the case 
of (I.i), according to (2.1), nonsteady regimes exist. 

Let us take note of the specific unique features encountered in the frontal dynamics 
of adsorption for (1.9). In the case of nonlinear convex isotherms [for example, (i.i0) 
with bmm < 0) the strongly adsorbed component of the mixture [with the lowest value of bmm 
in (1.9), for example hi1] in adsorption is "absorbed completely," since the concentration 
of the first component of the mixture for the frontal regime, moving at a velocity w I, changes 
in the interval c0~ e c~ eci ~ The quantity w~ in this case depends on the concentration 
of the mixture components [see (1.7)]. For (1.9) the strongly adsorbed component of the 
mixture (for example, the first) is independent of the mixture-component concentrations [see 
(2.2)], and in order to match (2.2) to (1.7) the concentration of the first component changes 
in the interval c01 ~ c I ~ ci (1), cz (I) > ci ~ The quantities cm(k) are found from Eqs. 
(1.7), which are in agreement with (1.3). 

Let us examine the solution of system of equations (1.8), (i. Ii) for the nonlinear 
isotherms (i. I0). For the nonsingular matrix Bmk 

c ~ =  ~ B~hgk ( i ~ m ,  k < n )  ( 2 . 3 )  
h = l  

t h e  c o e f f i c i e n t s  a r e  c h o s e n  so t h a t  f o r  e a c h  f i x e d  v a l u e  o f  m ( !  <_ m < n)  i n  ~ B ~ b ,  kBr j . 
r , h = l  

B~,,ngjg~ o n l y  t h e  d i a g o n a l  t e rms  o f  q u a d r a t i c  form w i l l  be d i f f e r e n t  f rom z e r o ,  which  w i l l  
be t h e  c a s e  when 

n 
b ~ R h FI FI g 2 O, g~ ~ - ~ - ~ - ~ o ~  

r , h ~ l  
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B,,~ b~hB~jBk~g~g,~ = 0 (m =/= 1, t ~ m, k, r, ] ~ n). 
r,h=l 

In each case system (1.8), (i.ii) "breaks down" into individual equations: 

aoOgm/Ot + UOgm/OZ -Jr- ~)bmOgm2/Ot = TO~g,~/Ot 2, 

ao = t + 8k0, gm(z, O) = gm ~  const, gin(O, t) = hm(t). 

With substitution 

gm = gm~ + AmO( In Gm)/Ot , A m  = - -~ / (Sbm)  

t h e  n o n l i n e a r  e q u a t i o n  ( 2 . 6 )  r e d u c e s  t o  t h e  l i n e a r  e q u a t i o n  

(2.4) 

( 2 . 5 )  

aoOGm/Ot + UOGm/OZ = "~02Gm/Ot 2 (t ~-~ m ~< n), 

Gin(z, O) = O, G,~(O, t)/G ~ = exp (brat), bm - =  ( g o m  - -  gm~ ] 

hra(t) ---- const; 

G~ (0, Q/G ~ = exp hm (x) - -  g~) dx , h~ (x) = var.  

. ( 2 . 6 )  

(2.7) 

For zero initial conditions when hm(t) = const the solution of Eqs. (2.6), with the aid of 
the Laplace integral transform with respect to the coordinate (s is the parameter of the 
integral transform), is obtained in the form 

Gin(s, t) = G ~ (brat)-- exp (~t) l/(s - -  sin), 

s,n = bm(bm~: - -  ao)/u, 
= a0/(2~)-- [a02/(4~ ~) + us/x ]1/2, 

V~ (z, t)/V ~ = exp (brat + s m z ) -  ( i /2 )exp  [aot ( l  - -  dm)/(2~)] erfc (z(m 1)) - -  

- -  (t/2) exp [aot (1 + dm)/(2~)] erfc (z~)),  dm ---- ( |  + 4USm/a]) 1/2, 

z~ ) = ( t -- aozd,~/u)/( 4zx/u) 1/2, z~ ) = ( t -5 aozdm/u)/( 4zT/tt) 1/2. 

(2.8) 

When we take into consideration the expression for Gm(Z , t) and relationships (2.5), 
according to (2.3), we find the analytical solutions of system (1.8), (i.ii) for nonlinear 
isotherms (i.i0). By means of these we can describe the frontal regimes consisting of con- 
centrated waves such as (1.4) and (1.12), for multicomponent mixtures in the presence of 
isotherms (i.i0). 

As an example, let us analyze the frontal regimes of a two-component mixture (n = 2) 
with the isotherms 

fl  = ~cl- -c12--c lc2,  f2 = 4c2--0"9~c2 -1"2c22" ( 2 . 9 )  

The  h y p e r b o l i c  s y s t e m  o f  e q u a t i o n s  ( 1 . 2 )  f o r  i s o t h e r m s  ( 2 . 9 )  w i t h i n  t h e  s c o p e  o f  c o n d i t i o n s  
( 1 . 6 )  a l l o w s  f o r  t h e  e x i s t e n c e  o f  two f r o n t a l  r e g i m e s  ( n o n s i n g u l a r i t y ) ,  c o n s i s t i n g  f o r  e a c h  
wave  i n d e x  i (1  ~ i ~ 2)  o f  c o n c e n t r a t e d  w a v e s  o f  t h e  ( 1 . 4 )  and  ( 1 . 5 )  t y p e .  

The  d i s t r i b u t i o n  o f  c o n c e n t r a t i o n s  a l o n g  t h e  z a x i s  f o r  a r e g i m e  o f  t h e  ( 1 . 5 )  t y p e  i s  
f o u n d  f r o m  t h e  f o l l o w i n g  s y s t e m  o f  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s :  

dcm/dq=r(OIc~lr(i) ~ z t ~ j ( 2 ~ m ~ < n ) , .  ~ = v i ( c )  ( l ~ i ~ n ) ,  ( 2 . 1 0 )  

d e r i v e d  f r o m  ( 1 . 2 )  and  ( 1 . 5 ) .  H e r e  r m ( i )  a r e  t h e  p r o p e r  e i g e n v e c t o r s  o f  t h e  m a t r i x  UBmk f o r  
t h e  e i g e n v a l u e s  o f  v i (1  ~ i ~ n ) .  

A c c o r d i n g  t o  ( 1 . 6 ) ,  ( 1 . 7 ) ,  and  ( 2 . 1 0 ) ,  f o r  i s o t h e r m s  ( 2 . 9 )  w i t h  c01 = 1,  c l  ~ = 0,~ co2 = 
0 . 1 ,  c2 ~ = 0 we h a v e  

Regime I: 

i = 1: v~- = u/(t + 2.94635), v + = ut(i + 3.03t66), 

c~ 1) = i,093, c(2 ~) = O, w 1 = u/(t  + 2.986), v7 > w~ > v+; ( 2 . 1 1 )  
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i = 2: v~- = ul(t + t , 8 i 4 8 ) ,  v + = ul(l + 45) ,  w~ = ul(t + 2 . 9 0 7 6 ) ,  

(~) = O; v ~ - > t v ~ > v  + ,  cl  

Regime II 

i = i: v7 = u/(t + 2.94636), v~ = u/(l + 2.85398), 

c~ ~)=0,  c ~ = 1 . 1 4 6 ,  v : < v ~ ( c ) < v ~ ;  (2 .12)  

i = 2: v? = u/(t + 1.258), v~ = u/(t + 46), 

w 2=u/(1+2,6256) ,  v ? > w  2>v~ ,  c~ ) = 0 .  

The Lax conditions (1.6) for frontal regimes (2.11) and (2.12) are fulfilled and there- 
fore for the indices i = 1 and 2 we achieve regime I in the form of traveling concentrated 
waves of the (1.4) type. For regime II, with i = i, there exists an expanding concentrated 
wave of the type of (1.5), while with i = 2 we have a traveling concentrated wave similar 
to (1.4). Let us note that the eigenvalues of Dm for the matrix fmk in the case of isotherms 
(2.9) for a two-component mixture are quantities that are both real and different. The eigen- 
values of ~m(Cl, c 2) for isotherms (2.9) are monotonic functions of ci, c 2. It has thus 
been demonstrated that for a two-component mixture (n = 2) and for monotonic eigenvalues 
of Dm with Cm ~ = 0 (i ~ m ~ n) the hyperbolic system of quasilinear equations (1.2) allows 
the existence of several solutions. Let us note that when Cm ~ ~ 0 (i ~ m ~ n) the hyper- 
bolic system (1.2) has a solitary solution consisting for each index i (i ~ i ~ n) in the 
presence of monotonic functions ~m (i ~ m ~ n) of a combination of solutions such as for 
the concentrated waves (1.4) and (1.5). Indeed, with the aid of Eqs. (1.7) and (2.10) for 
each index i (i ~ m ~ n) we can find arcs [solutions c m = Cm(Cl) (2 ~ m ~ n)], which uniquely 
relate the points C0m, Cm ~ (i ~ m ~ n). 

In the case of the nonconservative hyperbolic system (1.2) for a mixture of three com- 
ponents (n = 3) the literature (in particular, see [6]) points up the possibility for the 
existence of several regimes consisting of self-similar solutions such as (1.4) and (1.5). 
The above-cited analysis for a two-component mixture (n = 2) provided the initial proof for 
the existence of several regimes in the case of a conservative hyperbolic quasilinear sys- 
tem of equations in the presence of mixture adsorption isotherms with monotonic eigenvalues 
of ~m (i ~ m ~ 2). 

Let us analyze the solutions of the quasilinear system (1.8), (i,ii) for isotherms (i. I0). 
The system allows the existence of type I and II frontal regimes, which when hm(t) = const 
are described by the solutions for (2.3) and (2.8), and with z, t § ~ changing to the asymp- 
totic, consist of a combination of concentrated waves such as (1.4) and (1.12). Specifying 
the constants g0m, gm ~ in (2.3) and (2.8), we can construct analytical solutions correspon- 
ding to regimes I and II, consisting in the case of z, t + ~ of asymptotic solutions such 
as (1.4) and (1.12). Such an analysis shows the stability of nonidentical (two) solutions 
of the system of quasilinear equations (1.8) and (i.ii), since as �9 + 0 it tends monotoni- 
cally to the solutions of (2.11) and (2.12). 

Within the framework of the mathematical formulation of the problem dealing with the 
dynamics of mixture adsorption, the question dealing with the selection of a single regime 
remains open. In order to resolve this question it is essential that we use different con- 
cepts, in particular, physicochemical concepts. Based on the physicochemical concepts for 
the selection of a single physically realizable frontal regime in the dynamics of mixture 
adsorption (C0m > Cm ~ additional extremum conditions have been derived in [8]: 

according to which, for the frontal dynamics of adsorption, a regime with the lowest value 
for the velocity is physically attained. Conditions (2.13) have the following physicochem- 
ical sense: for the frontal dynamics of mixture adsorption it is the components of the 
mixture with the greatest value of adsorbability that are primarily absorbed, which corre- 
sponds to the largest eigenvalue of ~g (I ~ g ~ n) or, according to (1.6), to the lowest 
velocity v i (i ~ i ~ n). 
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For isotherms (2.9), according to the extremum condition (2.13), regime I is realized, 
since w I = u/(l + 2.986) < v I- = u/(l + 2.946). These results are also confirmed by means 
of numerical experimentation, i.e., integration with a computer of the quasilinear system 
(1.8), (i.ii), as well as confirmed by system (i.I), (1.2). 

3. Let us examine the solution of system (1.8) for a matrix ~mk of arbitrary form. 
Analysis of these solutions is of great applied interest for this matrix, since by means 
of such a system it becomes possible analytically for an entire series of important particu- 
lar cases approximately to describe the processes of adsorption mixture separation in labora- 
tory and industrial equipment, as well as to evaluate the accuracy of the approximate ana- 
lytical formulas for the calculation of the parameters characterizing the processes of ad- 
sorption mixture separation. 

In a number of cases, the experimental mixture adsorption isotherms can be described 
by approximate analytical expressions of the form 

/ ,~(c)=k~cm+ ~ b~gc~cg ( l~m, g~n) .  (3.1) 
g=l 

For the nonsingular matrix ~mk system (1.8), with consideration of the substitution 

changes into the following: 

cm= ~ A~kgh ( l ~ < m ,  k < ~ n ) ,  (3.2) 
h = l  

Og~/Ot + u Og~/Oz + 5 ~.~ A:~ 0/~ (c)/Ot = ~mO2g.JOt 2, ( 3 . 3 )  

since the eigenvalues of the matrix ~mk and Amg-ITgjAjk coincide (T m are the eigenvalues 

of the matrix Xmk)- For isotherm (3.1) system (3.3) with consideration of the substitution 

has the form 

g h =  ~ Lkpsp ( l < k ,  p < n )  (3.4) 

Using 

ah Osh/Ot + u ash/Oz + 5 ~ H~prO (spsr)/Ot = T~ 2, 
p,r=l  

-~ -1 L 6k~ Hkpr = Lhi A~,~b.~kA.~jLjvA~ zT, a~ = I + 
i ,m, j ,~=l  

(3.5) 

s j = ~ P j z r l  ( l ~ ] , l ~ n ) ,  
/=1  

we write system (3.5) as 

�9 ajOr/at + u Or/Oz + 5bj Or~/Ot = x~ O~'rj/Ot 2 (i ~-~ ] < n), 

if we select the coefficients of the matrices Amk, Lkp, Pj~ so that 

r~bj= ~ -1 2 Pjk HhprPpjPrjr j =/= O, 
h,p,r=l  

P~IH~.PvjPr~rjr~ = 0 (] :/= s, t ~ k, p, r, ] ~ n). 
h,p,r=l  

In  a c c o r d a n c e  w i t h  t h e  a b o v e ,  t h e  s o l u t i o n  o f  t h e  s y s t e m  o f  e q u a t i o n s  ( 1 . 8 )  f o r  C0m, Cm ~ = 
c o n s t  i n  t h e  c a s e  o f  t h e  i s o t h e r m s  f rom ( 3 . 1 )  can  be found  on t h e  b a s i s  o f  t r a n s f o r m a t i o n s  
( 3 . 2 ) ,  ( 3 . 4 ) ,  and ( 3 . 6 ) ,  w i t h  c o n s i d e r a t i o n  o f  t h e  s o l u t i o n s  f o r  ( 2 . 8 )  f o r  v a r i o u s  a k ,  b j ,  
x m (1 <_ k ,  j ,  m <_ n ) .  

(3.6) 
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The analytical solutions obtained in the manner described here make it possible to ana- 
lyze the entire multiplicity of frontal regimes in the multicomponent (n e 3) dynamics of 
adsorption (C0m > Cm ~ and desorption (C0m < Cm ~ for various values of the concentration 

C0m , Cm ~ (i ~ m ~ n). 
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A SET OF STEADY-STATE SOLUTIONS OF THE EVOLUTION EQUATION 

FOR PERTURBATIONS IN ACTIVE-DISSIPATIVE MEDIA 

O. Yu. Tsvelodub UDC 532.51 

Steady-state periodic solutions have been calculated numerically. It is demonstrated 
that an even set of such solutions comes about as a consequence of a successive cascade of 

bifurcations. 

In recent times, researchers into the wave processes in nonconservative media have ex- 
pressed great interest in an equation of the form 

H t +4HH x+H~+Hx~=O. (i) 

This interest is generated by the fact that in terms of form it is one of the simplest non- 
linear equations which could possibly be imagined, so that with its appearance in the simulation 
of the nonlinear behavior of perturbations for a rather large class of active-dissipative 
media it functions for the latter in as extensive a role as the well-known KdV equation for 

conservative media. 

Thus, in the description of the waves at the surface of a liquid film flowing freely 
down an inclined plane, such an equation has been derived in [i, 2], for the counterflow 
motion of a film and a gas we find the derivation of such an equation in [3], and for the 
perturbations at the boundaries separating two viscous liquids in a horizontal channel, the 
derivation of the equation is to be found in [4]. 

Linear stability analysis demonstrated that the trivial solution H = 0 of Eq. (i) is 
unstable relative to perturbations of the form exp [i~(x - ct)] with wave numbers ~ < 1 (per- 
turbations with ~ > 1 are attenuated). The growth of such perturbations over time can be 
curtailed through the action of nonlinear effects, as a result of which steady-state non- 
linear regimes are formed. 
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